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ABSTRACT

Statistical uncertainty is inherent to any Monte Carlo simulation of radiation transport prob-
lems. In space-angle-frequency independent radiative transfer calculations, the uncertainty
in the solution is entirely due to random sampling of source photon emission times. We have
developed a modification to the Implicit Monte Carlo algorithm that eliminates noise due
to sampling of the emission time of source photons. In problems that are independent of
space, angle, and energy, the new algorithm generates a smooth solution, while a standard
implicit Monte Carlo solution is noisy. For space and angle dependent problems, the new
algorithm exhibits reduced noise relative to standard implicit Monte Carlo in some cases,
and comparable noise in all other cases. The improvements are limited to short time scales;
over long time scales, noise due to random sampling of spatial and angular variables tends
to dominate the noise reduction from the new algorithm.
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1. Introduction

In this paper, we present a modification to the Implicit Monte Carlo (IMC) algorithm to reduce
statistical noise in radiation transport calculations. We consider problems of radiative transfer,
which is the process by which photons are emitted by hot matter, transported, and ultimately
reabsorbed. These problems require the solution of two coupled equations for radiation intensity,
I(x ,Ω, t), and matter energy density, �(x , t) (Pomraning, 2005):

1
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�, t)dΩ� − cσpaT
4 + S�(x , t) , (1b)

where σa(x , t) = absorption opacity, σs(x , t) = scattering opacity, σp(x , t) = Planck mean opacity,
b(T ) = normalized Planck function, SI(x ,Ω, t) = photon sources, S�(x , t) = thermal sources.
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Equations (1a) and (1b) are written in a frequency independent, isotropic scattering form for
simplicity. Frequency dependence and anisotropic scattering do not affect the derivation of our
method.

Equations (1a) and (1b) are coupled equations. Photons are absorbed by matter, thereby
increasing its temperature. The hot matter emits photons, which then decreases its temperature.
The T 4 coupling term makes thes equations stiff, and so an explicit time stepping algorithm
often yields an oscillatory solution. Instead, we solve these equations using the Implicit Monte
Carlo method, which has improved stability properties (Fleck and Cummings, 1971). The details
of this method are not discussed here.

In this paper, we will focus only on the way in which source photons are emitted. Source
photons, whether they are from arbitrary sources, SI(x ,Ω, t), or from thermal emission from
the hot matter, 1

4π cσp(x , t)aT
4b(T ), are assumed to be uniformly emitted within a given time

step. We begin in Section 2 by showing that the uniform random sampling of the source photon
emission times introduces noise into IMC calculations, even for problems that are independent
of space, angle, and frequency.

It has previously been shown that the source photon emission times can be treated analytically,
thereby eliminating the need to randomly sample the emission times (Gentile and Trahan, 2011).
This method completely eliminates noise due to emission time sampling. We will rederive this
method in Section 3.

We then explore the effectiveness of the new algorithm through a series of test problems in
Section 4. We conclude with a brief discussion in Section 5.

2. Noise Due to Emission Time Sampling in Space, Angle, and Frequency
Independent Problems

We will first show that noise exists in the IMC solution even in problems that are independent of
space, angle, and frequency. In this case, noise is entirely a result of randomly sampling source
photon emission times.

Let us examine the case of an infinite medium problem with gray, constant opacities, and with
matter and radiation at equilibrium at temperature T , simulated with the IMC method. The
census photons in a volume V representing the initial radiation all initially have time t = 0 and
have a total energy

Ec(t = 0) = aT 4V . (2)

During a time step of size ∆t, the energy of each census photon will decrease by a factor
exp[−σc∆t]. The total energy in census photons at the end of the time step will therefore be

Ec(t = ∆t) = aT 4V exp[−σc∆t] . (3)

To simulate thermal emission, we will make Ns thermal source photons, each with a different,
randomly sampled initial time, ti,p ∈ [0, t]. We will assume all Ns photons have the same initial
energy

Ep(t = 0) = acσT 4V∆t/Ns . (4)
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Since ti,p is unique for each photon, they will all reach time ∆t with different energies:

Ep(t = ∆t) = (acσT 4V∆t/Ns)exp[−σc(∆t− ti,p)] . (5)

The sum of these energies will be

Et(t = ∆t) ≡
Ns�

p=1

Ep(t = ∆t) = acσT 4V∆t
1

Ns

Ns�

p=1

exp[−σc(∆t− ti,p)] . (6)

If we let Ns → ∞, we see that this sum is a Monte Carlo estimate for an integral over all posible
emission times:

Et(t = ∆t) = lim
Ns→∞

acσT 4V∆t
1

Ns

Ns�

p=1

exp[−σc(∆t− ti,p)] ,

= acσT 4V∆t
1

∆t

� ∆t

0
exp[−σc(∆t− τ)]dτ . (7)

By performing the integral in Eq. (7) we find that, in the limit of large Ns, the total radiation
energy due to thermally emitted photons at t = ∆t will be

Et(t = ∆t) = aT 4V (1− exp[−σc∆t]) . (8)

Adding Eqs. (3) and (8) yields:

Ec(t = ∆t) + Et(t = ∆t) = aT 4V ,

which is exactly the value necessary to maintain thermal equilibrium. The matter energy will
also be the same as the initial value, by energy conservation. With a finite number of photons, we
will not maintain thermal equilibrium exactly, because the sum in Eq. (6) will only approximate

the integral in Eq. (7), with an error that is proportional to N−1/2
s (Kalos and Whitlock, 2008).

Furthermore, the noise will grow as ∆t increases because the integrand in Eq. (7) will vary more
within the limits of integration, and so the integral is more poorly approximated by the sum in
Eq. (6).

This behavior can be observed in Figs. 1 and 2. These plots show the matter and radiation
temperatures, Tm and Tr respectively, as a function of time according to an IMC simulation.
The simulation is of a one-zone cube with unit length in each direction. All faces have reflecting
boundaries, making it effectively an infinite medium problem. The material temperature is
initialized to Tm,0 = 1.0 in Fig. 1, and to 1.1 and 0.5 in Fig. 2. The radiation temperature
is initialized such that the equilibrium temperature is 1.0. The material has heat capacity
cv = 1.0, and an absorption opacity σ = 10. The unit system is defined such that a = c = 1.0.
The simulation used 100 photons per time step. In the equilibrium case, Fig. 1, varying time
steps are used, with ∆t = 0.001 for t ∈ [0, 1], ∆t = 0.01 for t ∈ (1, 2], and ∆t = 0.1 for t ∈ (2, 3].

In Fig. 1, we see that noise does indeed increase as the time step size, ∆t, increases. In Fig. 2, we
see that statistical noise from emission time sampling is greater when the matter temperature is
large relative the radiation temperature. Note that the radiation temperature is initially smooth
in Fig. 2(b) when the matter is initially cold, while it is always noisy in Fig. 2(a) because the
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Figure 1: Tm and Tr in a grey, infinite medium problem in thermal equilibrium at T = 1.0
simulated by IMC. ∆t = 0.001 for t ∈ [0, 1], ∆t = 0.01 for t ∈ (1, 2], and ∆t = 0.1 for t ∈ (2, 3].

(a) Tm,0 = 1.1 (b) Tm,0 = 0.5

Figure 2: Tm and Tr in a grey, infinite medium problem simulated by IMC. Tr,0 is chosen such
that the equilibrium temperature is 1.0

matter is always hot. This behavior occurs because census photon times are deterministic (all
census photons begin at the start of the time step), and hence there is no noise in the census
photon radiation energy in the infinite medium case. When the radiation temperature is large
relative to the matter temperature, most of the energy is carried by census photons, and so the
noise in the source photon radiation energy is small.
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3. Modified Source Treatment to Eliminate Noise Due to Emission Time
Sampling

In this section, we will show how the random sampling of source photon emission times can
be eliminated from the IMC algorithm. In IMC, the physical properties of the system are
assumed to be constant within a time step. As a result, photon behavior and energy deposition
is independent of when it occurs within a time step.

Therefore, for each photon path, we can consider what would have happened if the photon had
been born at time τ ∈ [tn, tn+1]. Then we can analytically calculate how much energy would have
been absorbed on this path, Ea, how much radiation energy this photon would have represented,
Er, and determine whether or not the photon would have reached census and with what energy,
Ec. Then we will calculate the average for all possible emission times τ ∈ [tn, tn+1]. We refer
to our new algorithm as “smooth emission IMC” because we smooth the emission time of the
source photons over the entire time step. We refer to the modified source photons as “smooth
source photons”.

As in IMC, we sample a position, direction, frequency, and energy Ep for each source photon, and
the energy will decrease exponentially along each photon path: Ep(s) = Ep(s0)exp[−σ(s− s0)].
However, we do not sample an emission time. Instead of the source photon having a time, it
will have a distance traveled, sp, with an initial value of 0. The source photon will travel a total
distance c∆t in the time step, unless it exits the problem through a boundary. After traveling
a distance s, physical source photons born in [tn+1 − s/c, tn+1] have already reached census.
Therefore, the radiation energy represented by the smooth source photon after it has moved
a distance s must be attenuated by absorption and by the fact that a fraction of the physical
source photons are reaching census. The additional attenuation factor is:

∆t− s/c

∆t− s0/c
= fraction of photons that have not reached census at s0 that do reach census by s.

(9)
The energy of the source photon will be either absorbed, leave the problem through a boundary,
or reach census as the photon reaches sp = c∆t.

First, we calculate the average radiation energy of the smooth photons. The radiation energy
of the smooth photon at the end of a path from s0 to s is:

Er,smooth(s) = Ep(s0)exp[−σ(s− s0)]
∆t− s/c

∆t− s0/c
. (10)

Then the average radiation energy over the photon path is:

�Er�s0,s1 =

� s1
s0

Er,smooth(s)ds� s1
s0

ds
=

� s1
s0

Ep(s0)exp[−σ(s− s0)]
∆t−s/c
∆t−s0/c

ds

s1 − s0
,

=
Ep(s0)

σ (s1 − s0) (∆t− s0/c)

×
�
∆t (1− exp[−σ(s1 − s0)])−

1

cσ
(exp[−σ(s1 − s0)] (1 + s1σ)− (1 + s0σ))

�
,

= average energy of the photon on the path from s0 to s1. (11)
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Then the average radiation energy of the smooth photon during the time step is the sum of the
averages on each path weighted by the fractional path length:

Er =

Npaths�

p=1

�Er�s0,s1
s1 − s0
c∆t

. (12)

Next, we calculate the energy reaching census on each path. We see that:

ds/c

∆t
= fraction of all photons that reach census after traveling a distance s� ∈ [s, s+ ds],

∆t− s0/c

∆t
= fraction of photons that have not reached census at s0,

and so:
�
ds/c

∆t

�
/

�
∆t− s0/c

∆t

�
=

ds/c

∆t− s0/c
,

= fraction of photons that have not reached census at s0 that do

reach census after traveling a distance s� > s0, s
� ∈ [s, s+ ds].

The energy of a physical source photon after traveling from s0 to s is:

Er,physical(s) = Ep(s0)exp[−σ(s− s0)] .

Thus, the total energy reaching census on a path from s0 to s1 is:

Ec(s0, s1) =

� s1

s0

Ep(s0)

c(∆t− s0/c)
exp[−σ(s− s0)]ds

� ,

=
Ep(s0)

cσ(∆t− s0/c)
[1− exp[−σ(s1 − s0)]] . (13)

Finally, we calculate the total energy absorbed along the path from s0 to s1. This is done by
simple energy conservation, which demands that:

Ea(s0, s1) + Ec(s0, s1) + Er,smooth(s1) = Er,smooth(s0) . (14)

Introducing Eq. (10) into Eq. (14) and rearranging yields:

Ea(s0, s1) = Er,smooth(s0)

�
1− exp[−σ(s1 − s0)]

∆t− s1/c

∆t− s0/c

�
− Ec(s0, s1) . (15)

Equations (11), (13), and (15) define the radiation energy, energy reaching census, and absorbed
energy along each photon path from s0 to s1. We sample all other variables and track the photon
through the zones as we do in standard IMC. Census photons are treated exactly as in standard
IMC; only source photons are treated differently, and only until the end of the time step in
which they are born.

One complication that arises from this algorithm is that now each photon path contributes
energy to census. Source photons no longer reach the end of the time step, at least in the usual
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sense, and so we have no source photons to serve as census photons for the next time step. We
must select source photons at random to carry the energy during the next time step. To do this,
we sample an emission time for each photon, but use it only to determine when to save the state
of the photon to a list. Source photons are still transported after they have been saved until
they have traveled a distance c∆t, they are destroyed, or they leak out of the system. After all
source photons have been transported in this manner, we distribute the total census energy, Ec,
among the saved photons in proportion to their energies at the time they were saved.

We now apply the smooth emission algorithm to the same problems described in Section II.
In Figs. 3 and 4, we see that the new algorithm yields a smooth solution for equilibrium and
non-equilibrium cases.

Figure 3: Tm and Tr in a grey, infinite medium problem in thermal equilibrium at T = 1.0
simulated by smooth emission IMC. ∆t = 0.001 for t ∈ [0, 1], ∆t = 0.01 for t ∈ (1, 2], and
∆t = 0.1 for t ∈ (2, 3].

4. Numerical Results for Space and Angle Dependent Problems

We will now demonstrate the effectiveness of the smooth emission IMC algorithm on problems
with space and angle dependence. Spatial and angular variables are also randomly sampled in
the IMC algorithm. As a result, the equilibrium solution in problems with multiple spatial zones
will be noisy due to particles randomly crossing zone boundaries, even with the new algorithm.
We expect that for problems in which the dominant source of noise is the sampling of the
emission time, the smooth emission IMC algorithm will reduce noise in the solution relative to
standard IMC.

Noise due to sampling the spatial and angular variables only shows up as photons cross zone
boundaries. Therfore, for simulations in which most source photons remain in the zone they
were created in, emission time sampling should be more important than the sampling of other
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(a) Tm,0 = 1.1 (b) Tm,0 = 0.5

Figure 4: Tm and Tr in a grey, infinite medium problem simulated by smooth emission IMC.
Tr,0 is chosen such that the equilibrium temperature is 1.0

variables. The new algorithm should reduce noise for such simulations. This condition is met if
the mean free path of photons is small compared to the size of the zone, because few photons
will stream from one zone to another:

1

σ
� ∆x, or

1

σ∆x
� 1 . (16)

This condition is also met if the time step size is sufficiently small that source photons do not
migrate far from their point of emission relative to the size of the zone. We define:

c∆tσ ≡ N ∝ the average number of photon paths per time step.

Assuming that the photon paths are not correlated in direction, the average distance traveled
by a photon on N paths from the point of emission will be:

√
N

1

σ
=

�
c∆t

σ
.

This leads to the desired condition:
�

c∆t

σ
� ∆x, or

�
c∆t

σ
/∆x � 1 . (17)

We have already seen that the noise due to emission time sampling is greater when a significant
portion of the energy is carried by source photons rather than census photons (Fig. 2). This
occurs when:

Eemitted

Ecensus
=

fcσaT 4V∆t

aT 4V
= fcσ∆t � 1 . (18)

When Eq. (18) holds, the smooth emission algorithm should be more effective. Here, f is the
Fleck factor that arises in the IMC algorithm (Fleck and Cummings, 1971).
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Thus, if a particular simulation satisfies Eqs. (16), (17), and (18), the smooth emission IMC
algorithm should reduce noise in the solution. To demonstrate, we study a one-dimensional,
homogenous problem with transmitting boundaries. Face sources with T = 1.0 at each end hold
the problem in thermal equilbrium. The system is divided into 10 spatial zones, and the total
domain size is determined by the desired mesh size, ∆x. All tests are run to 1000 time steps
with 10000 particles per step. Units are chosen such that a = c = 1.0. The smooth emission
algorithm and standard IMC algorithm are applied to several simulations with different values
of ∆t, ∆x, and heat capacity, cv. The two algorithms are compared qualitatively by visual
inspection of the noise in the equilibrium solution.

Figure 5 shows an example of a simulation for which the smooth emission algorithm outper-
forms standard IMC. For this simulation, 1/(σ∆x) = 0.001,

�
c∆t/σ/∆x = 0.0003162, and

Eemitted/Ecensus = 0.07143. Therefore, by Eqs. (16), (17), and (18), we expect significant noise
reduction when using the smooth emission algorithm, which is exactly what is observed. Look-
ing at Fig. 5, we see that in zone 1, which is a boundary zone, the temperature rises uniformly
as the boundary source heats the problem. The uniformity is only disturbed as particles enter
or exit this zone. In zone 2, which is an interior zone, the temperature does not change at all
unless a particle enters or exits this zone.

(a) Zone 1 (b) Zone 2

Figure 5: Radiation temperature in an equilibrium problem simulated by standard IMC (Tr)
and by smooth emission IMC (Tr Smooth). ∆t = 0.001, ∆x = 10.0, and cv = 1.0. Therefore,
1/(σ∆x) = 0.001,

�
c∆t/σ/∆x = 0.0003162, and Eemitted/Ecensus = 0.07143.

Figure 6 shows an example of a simulation for which the smooth emission algorithm does
not outperform standard IMC. For this simulation, 1/(σ∆x) = 1.0,

�
c∆t/σ/∆x = 5.0, and

Eemitted/Ecensus = 0.2475. These values do not satisfy Eqs. (16), (17), and (18), and so the poor
performance is expected. While it is still true that the temperature in a zone cannot change
unless photons cross zone boundaries, photons cross zone boundaries in every time step for this
simulation, so the noise is not reduced.

Table I summarizes the performance of the smooth emission IMC algorithm for a series of runs
with cv = 1.0. From Table I it is clear that smooth emission IMC becomes more effective as
1/(σ∆x) and

�
c∆t/σ/∆x get smaller, as expected.
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Figure 6: Radiation temperature in an equilibrium problem simulated by standard IMC (Tr)
and by smooth emission IMC (Tr Smooth). ∆t = 0.25, ∆x = 0.01, and cv = 1.0. Therefore,
1/(σ∆x) = 1.0,

�
c∆t/σ/∆x = 5.0, and Eemitted/Ecensus = 0.2475.

Table I. Qualitative performance of the smooth emission algorithm vs. standard IMC with
cv = 1.0. Sig. = significant, Lim. = limited. Ee = Eemitted, Ec = Ecensus.

Table II summarizes the performance of the smooth emission IMC algorithm for the same
series of test problems, except with cv = 4000. The only effect of increasing cv is to increase
Eemitted/Ecensus, which should improve the performance of the new algorithm. Table II indicates
that this is indeed the case. We see that more test problems show significant improvement and
fewer show no improvement. Furthermore, in some cases, problems with larger values of 1/(σ∆x)
and

�
c∆t/σ/∆x are more affected than similar problems with smaller values of 1/(σ∆x) and�

c∆t/σ/∆x due to the increased amount of energy carried by source photons.

Now we will apply the smooth emission algorithm to more realistic problems. First, we consider
a Marshak wave test problem in a homogeneous medium with transmitting boundaries. A face
source with T = 1.0 keV heats the problem from the left side. The medium is initially cold and
in thermal equilibrium, with Tr = Tm = 0.003162 keV. There are twenty zones with ∆x = 0.1
cm. The simulation is run to a time tmax = 5× 10−7 s with a time step of ∆t = 10−12 s. There

Transport Theory and Statistical Physics 10/14



Analytic Treatment of Source Photon Emission Times

Table II. Qualitative performance of the smooth emission algorithm vs. standard IMC with
cv = 4000.. Sig. = significant, Lim. = limited. Ee = Eemitted, Ec = Ecensus.

are 10000 particles per time step, and cv = 4T 3.

(a) Zone 1 (b) Zone 5

Figure 7: Radiation temperature in a Marshak wave test problem simulated by standard IMC
(Tr) and by smooth emission IMC (Tr Smooth) shown over a short time scale. 1/(σ∆x) = 0.01,�
c∆t/σ/∆x = 0.05475, and Eemitted/Ecensus = 21.24.

Figures 7 and 8 show the radiation temperature versus time in the boundary zone and an interior
zone. For this problem, 1/(σ∆x) = 0.01,

�
c∆t/σ/∆x = 0.05475, and Eemitted/Ecensus = 21.24,

and so the smooth emission algorithm should reduce the noise. In Fig. 7, which shows the
results over a short time scale, we see that the smooth emission result is generally less noisy.
However, we see that the solution can still drift significantly over the course of many time steps
as particles cross zone boundaries. As a result, over long time scales, the two methods are in
close agreement, but both show similarly large drifts, and it is difficult to know which is more
accurate at any given point in time (Fig. 8).

Finally, we will study the effectiveness of the smooth emission algorithm in simulating a radiating
shock. The test problem is one developed by Lowrie and Edwards and has a known semi-
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(a) Zone 1 (b) Zone 5

Figure 8: Radiation temperature in a Marshak wave test problem simulated by standard IMC
(Tr) and by smooth emission IMC (Tr Smooth) shown over a long time scale. 1/(σ∆x) = 0.01,�
c∆t/σ/∆x = 0.05475, and Eemitted/Ecensus = 21.24.

analytic solution (Lowrie and Edwards, 2007). It is a mach 45 shock traveling through an
opaque medium. The matter is an ideal gas with γ = 5/3 and cv = 1.447 × 1015 erg/(g-
keV). It is a purely absorbing medium with σa = σ0ρ2T−3.5, and σ0 = 85.27 cm5 keV3.5 / g2.
Ahead of the shock, ρ = 1.0 g/cm3, v = 0 cm/s, and Tm = Tr = 0.1 keV. Behind the shock,
ρ = 6.426 g/cm3, v = −4.818 × 108 cm/s, and Tm = Tr = 8.36 keV. The velocity of the shock
is vshock = −5.71 × 108 cm/s. The mesh contains 5000 zones that are initially of equal size
and spanning x ∈ [0, 2500] cm. There are 106 photons per time step. Ahead of the shock,
1/(σ∆x) = 7.417 × 10−6,

�
c∆t/σ/∆x = 0.006669, and Eemitted/Ecensus = 2628, while behind

the shock, 1/(σ∆x) = 0.9587,
�

c∆t/σ/∆x = 2.397, and Eemitted/Ecensus = 0.02888. Therefore,
we would expect the smooth emission algorithm to reduce noise ahead of the shock, but not
behind it.

Figure 9: Radiation temperature for a Mach 45 shock at t = 14.0219 × 10−8 s from a stan-
dard IMC simulation (Simulation Tr), from a smooth emission IMC simulation (Simulation Tr

Smooth), and from an analytic solution (analytic Tr).
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(a) Ahead of the Shock Front (b) Behind the Shock Front

Figure 10: Radiation temperature for a Mach 45 shock at t = 14.0219× 10−8 s from a standard
IMC simulation (Tr) and from a smooth emission IMC simulation (Tr Smooth) ahead of and
behind the shock.

In Fig. 9, we see that smooth emission IMC and standard IMC both agree well with the analytic
solution. Figure 10 shows the radiation temperature as a funcntion of space ahead of and behind
the shock after many time steps. As we have shown, over long time scales the solution can drift
substantially, and as a result, the spatial solution is still noisy this far into the simulation.

5. Conclusions

In this paper, we have demonstrated that the random sampling of source photon emission times
can be eliminated from the IMC algorithm. Instead, we consider energy contributions from all
possible emission times and analytically calculate the average.

This new treatment of photon sources eliminates noise in one zone, grey, infinite medium prob-
lems. The new algorithm reduces noise in multizone problems in which most source photons
remain in the zone they were emitted in. It is more effective in problems in which the number
of source photons is large compared to the number of census photons.

However, the zone temperatures can still exhibit large jumps when particles cross zone bound-
aries. As a result, over long time scales the new algorithm has little effect on the solution.

In the future, we intend to implement a stratified sampling algorithm for the position and angle
of source photons. Stratified sampling should reduce noise arising from the random sampling of
the spatial and angular variables. When combined with analytic treatment of photon emission
time, stratified sampling of the position and angle of emitted photons may reduce noise in IMC
calculations.
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